Workflows

What is a Workflow?
52 Workflows visible to you, out of a total of 74
Stable

Name: Matmul GPU Case 1 Cache-ON Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4

Matmul running on the GPU leveraging COMPSs GPU Cache for deserialization speedup. Launched using 32 GPUs (16 nodes). Performs C = A @ B Where A: shape (320, 56_900_000) block_size (10, 11_380_000)             B: shape (56_900_000, 10)   block_size (11_380_000, 10)             C: shape (320, 10)                block_size ...

Type: COMPSs

Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)

Submitter: Cristian Tatu

DOI: 10.48546/workflowhub.workflow.798.1

Stable

Name: Matmul GPU Case 1 Cache-OFF Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs 3.3 Machine: Minotauro-MN4

Matmul running on the GPU without Cache. Launched using 32 GPUs (16 nodes). Performs C = A @ B Where A: shape (320, 56_900_000) block_size (10, 11_380_000)             B: shape (56_900_000, 10)   block_size (11_380_000, 10)             C: shape (320, 10)                block_size (10, 10) Total dataset size 291 ...

Type: COMPSs

Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)

Submitter: Cristian Tatu

DOI: 10.48546/workflowhub.workflow.797.1

Stable

Name: K-Means GPU Cache OFF Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4

K-Means running on GPUs. Launched using 32 GPUs (16 nodes). Parameters used: K=40 and 32 blocks of size (1_000_000, 1200). It creates a block for each GPU. Total dataset shape is (32_000_000, 1200). Version dislib-0.9

Average task execution time: 194 seconds

Type: COMPSs

Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)

Submitter: Cristian Tatu

DOI: 10.48546/workflowhub.workflow.799.1

Stable

Name: K-Means GPU Cache ON Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4

K-Means running on the GPU leveraging COMPSs GPU Cache for deserialization speedup. Launched using 32 GPUs (16 nodes). Parameters used: K=40 and 32 blocks of size (1_000_000, 1200). It creates a block for each GPU. Total dataset shape is (32_000_000, 1200). Version dislib-0.9

Average task execution time: 16 seconds

Type: COMPSs

Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)

Submitter: Cristian Tatu

DOI: 10.48546/workflowhub.workflow.800.1

Stable

Name: Dislib Distributed Training - Cache ON Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4

PyTorch distributed training of CNN on GPU and leveraging COMPSs GPU Cache for deserialization speedup. Launched using 32 GPUs (16 nodes). Dataset: Imagenet Version dislib-0.9 Version PyTorch 1.7.1+cu101

Average task execution time: 36 seconds

Type: COMPSs

Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)

Submitter: Cristian Tatu

DOI: 10.48546/workflowhub.workflow.802.1

Stable

Name: Dislib Distributed Training - Cache OFF Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4

PyTorch distributed training of CNN on GPU. Launched using 32 GPUs (16 nodes). Dataset: Imagenet Version dislib-0.9 Version PyTorch 1.7.1+cu101

Average task execution time: 84 seconds

Type: COMPSs

Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)

Submitter: Cristian Tatu

DOI: 10.48546/workflowhub.workflow.801.1

Lysozyme in water full COMPSs application run at MareNostrum IV, using full dataset with two workers

Type: COMPSs

Creator: Rosa M Badia

Submitter: Raül Sirvent

PyCOMPSs implementation of Probabilistic Tsunami Forecast (PTF). PTF explicitly treats data- and forecast-uncertainties, enabling alert level definitions according to any predefined level of conservatism, which is connected to the average balance of missed-vs-false-alarms. Run of the Kos-Bodrum 2017 event test-case with 1000 scenarios, 8h tsunami simulation for each and forecast calculations for partial and full ensembles with focal mechanism and tsunami data updates.

PyCOMPSs implementation of Probabilistic Tsunami Forecast (PTF). PTF explicitly treats data- and forecast-uncertainties, enabling alert level definitions according to any predefined level of conservatism, which is connected to the average balance of missed-vs-false-alarms. Run of the Boumerdes-2003 event test-case with 1000 scenarios, 8h tsunami simulation for each and forecast calculations for partial and full ensembles with focal mechanism and tsunami data updates.

Stable

Lysozyme in water sample COMPSs application

Type: COMPSs

Creator: Rosa M. Badia

Submitter: Raül Sirvent

Powered by
(v.1.16.0-main)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH